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Programatica Positions:

= “Programming as if Properties Matter” to support
the construction and certification of high-assurance
systems

= There is a Broad Spectrum of (Useful) Assurance
Techniques: code review, testing, formal methods, ...

= Everything Changes: flexible and efficient tools are
needed to deal with constantly evolving requirements,
code, evidence, and assurance goals

= Make it Real: assuring security properties of a real-
world microkernel implementation



Programming as if Properties Matter:
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Building High-assurance Software:

There are many ways to increase assurance:
- Test programs on specific cases

- Test programs on randomly generated test cases
derived from expected properties

- Peer review

- Use algorithms from published papers

- Reason about meta-properties (e.g., using types)
- Use theorem provers to validate (translated) code

Each can contribute significantly to increased
reliability, security, and trustworthiness



Evidence;

= Diverse techniques, varying in:
- Applicability
- Assurance
- Technical details

= But there is a common feature:

- Each one results in some tangible form of
evidence that provides a basis for trust



Examples of Evidence:

There are many kinds of evidence:
- An (input, expected output) pair for a test case

- A property statement, and heuristics for guiding the
selection of “interesting” random test cases

- A record of a code review meeting
- A citation/URL for a published paper or result
- A type and the associated derived property

- A translation of the source program into a suitable
theory and a user-specified proof tactic

Each different kind of evidence is stored with the
program as a certificate



Extreme Programming:
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» Testing and Programming, hand in hand

» Testing reveals errors in the program
" Programming reveals errors in the test cases



"Extreme Formal Methods":
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* Programming and Validation, hand in hand
= Validation reveals errors in the program
" Programming reveals errors in the specification



The Programatica Vision:
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Programatica Servers:

"I say so”
- A person signs their name by an assertion
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Evidence and Certificates:

The certificate abstraction is designed to
support:

i Calaturing evidence (in many different forms) and
Collating it with source materials

= Combining evidence from different sources

= Tracking dependencies and detecting when
evidence must be revalidated as a result of changes

= Managing evidence by analyzing and reporting on
what has been established, identifying weaknesses,
guiding further effort, etc...



Capture and Collate:
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Compound documents allow source materials
to be packaged with related evidence and
dependency information.




Combining Evidence:

Programatica allows us to combine evidence from
different sources:

Goals:
Evidence Integration
Modular Certification

Mechanism:
Each certificate carries a sequent:
Hypotheses I~ Conclusions

Servers for external tools are responsible for testing
validity (i.e., checking that a certificate’s sequent is
consistent with its evidence)



Certificate Interactions:

N.B. Different kinds of
certificate
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Certificate Interactions:

Programatica-level
inference

A measure of
assurance ...

Programatica-level
certificate



Certificate Interactions:
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Certificate Interactions:

Untrustworthy source?
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Certificate Interactions:

“what if ?”
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Dealing with Change:

= Changes happen all the time in software development!
- functionality, requirements, bug fixes, assurance

= We must handle change as efficiently as possible

= Changes to source code require recompilation
- A fully automated process using "make” tools

= Changes to source code require recertification
- Some evidence cannot be reconstructed automatically



Recertification after Change:

" "make”-like functionality for certification

- Track dependencies to determine when evidence is
invalidated by changes to source code

= Minimize the need for recertification:
- Fine-grained dependency tracking

- Robust dependency tracking

= Ignore insignificant changes: reformatting; reordering;
changes to comments; changes to local variable names;
changes in unrelated sections of code; ...

- Lazy recertification
* Track validity but do not require immediate recertification



Using a Dependency Graph:
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Using a Dependency Graph:

Properties




Using a Dependency Graph:

Potential chan‘ge>
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Hashing to Detect Change:

= When we parse a source file, we calculate a
cryptographically robust hash (e.g., MD5) over the
abstract syntax of each definition

= These hashes are cached as hidden information:
0ccl75b9c0£f1b6a831c399%9e269772661
92ebbffeebae2fec3ad71c777531578f
81a5fe3d544359af13848e6192eced’75
445a4caz24el10824e03efd2e2e1d755d9
987dd8£5£1293857dc7932c14c7£3d80
bb53046df3ef7793ee7c37aec0d090d0
ad797e6£29cf558f7aeb8200563ecd3a

= If we find a definition whose hash is not listed, then it
must be new/modified.

= By hashing over abstract syntax, we do not flag any
changes if the source text Is reformatted, if comments
are changed, etc...



Management Tools:

Certificate management tools let
users ask (and answer) questions
like the following:

- What properties have I verified
(or not)?

- What tools did I use?

- Is the evidence up to date &
consistent with the code?

. N
- What conclusions can we draw
from the evidence in hand?

- What other verification
strategies should I pursue?
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Future Challenges:

= Making the assure-o-meter real

= Dealing with non-functional properties
* Encoding certification policy

= Certifying the certification tools ...

* Developer Carrot and Stick



